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Equations of Motion of a Vehicle in a Moving Fluid

Peter G. Thomasson*
Cranfield University, Cranfield, Bedford, England MK43 0AL, United Kingdom

Difficulties with the differing sets of equations used for submersibles, airships, and airplanes are removed by
treating the effects of the inertial and added masses as separate functions of the inertial and relative velocities. The
equations of motion of a rigid vehicle moving in a perfect fluid are then derived for the case where the fluid mass
is accelerating and contains velocity gradients. The classic perfect fluid moments and forces for straight, curved,
and convergent flows are recovered. It is shown that the differing sets of equations normally used for submersibles,
airships, and aircraft can also be recovered as special cases, but in an augmented form that includes the effects
of fluid motion and velocity gradients. In addition, it is shown how the resultant perfect fluid equations may be
augmented to include viscous forces and moments derived from other theoretical or experimental sources.

Nomenclature D, q,r = body axis components of inertial angular
A = 3 X3 matrix of center of gravity coordinates, Veloci.ty ]
Eq. (17) pr.qyr, 1ty = effectiverotation rates, Eq. (59)
A, = 6 X 6 small perturbation aerodynamic Pg»dg> T = body axis Compopents of gust angular velocity
derivative matrix o = vector of generalized forces
A, = vector of nonperfect fluid forces and moments that q = vector of problem coordinates,.Eq. (24).
are a function of the relative velocity x:_‘ R = body angular rates transformation matrix,
a = vector from body axis origin to the center Eq. 3 .1) )
of gravity T = total kinetic energy
a,,a,,da, = body axis coordinates of a T = Lagrangian in terms of the generalized
B =3 %3 matrix of center of buoyancy coordinates and their velocities
coordinates, Eq. (17) u,v,w = body axis components of inertial velocity
b = vector from the body axis origin to the center Ue, Ve, W = body axis components of steady circulating
of buoyancy velocity relative to multiply connected region
b., b, b, = body axis coordinates of b ug, vy, wy = body axis components of the inertial velocity of
E = direction cosine matrix, Eq. (30) the multﬁply connected region of ﬂUi.d
F = 6 X 1 vector of body axis components of the U, Vg, Wy = body axis components of gust velocity
external forces and moments v = apparentrate of change including the flowfield,
F, = 6 X 1 vector of body axis forces and moments due Eq. (61) ) ) o o
to rotating axes, the dynamics vector w = 6 X 6 matrix of inertial linear velocities,
F, = steady-state F vector Eq. 39) ] ) ) B
Fy = 6 X 1 vector of body axis forces and moments due W. = 6 X6 matrix of circulating velocities, Eq. (40)
to vessel velocity W, = 6 X 6 matrix of fluid velocities, Eq. (40)
1 = identity matrix w, = 6 X 6 matrix of relative velocities, W — W, — W,
Iy, Iy, I. = roll, pitch, and yaw inertia W = apparentrate of change including the flowfield,
I, I:v,, I, = productsof inertia Eq. (61)‘
J.., etc. = apparentinertia, Eq. (3) X, Y, Z = pody axis force components .
K, = kinetic energy of undisturbed circulating x = inertial linear andTangular velocity vector,
fluid mass (u, v, w, p,q,r)
L,M,N = body axis moment components X = circulating velocity vector, (i, V¢, W, 0, 0, 0"
I, = tail moment arm Xy = vessel or region velocity vector,
T
M = 6 X 6 mass matrix including added masses (uy,vy,wy,0,0,0)7 ) . .
M, = mass of fluid in multiply connected region X, = gust or combined fluid and cugulatlng velocity
M, = 6 X 6 vehicle mass matrix, Eq. (9) vector, (ug, VesWes Pg» dg» re) ) ]
M. = 6 X 6 displaced mass matrix, Eq. (14) X, = relative velocity vector of the vehicle and fluid,
1 - ) . T
M, = 6 X 6 added mass matrix, Eq. (1) i Bq. (74), (ur, ve, Wr, Prs Grs 7)™ )
m = mass of vehicle x; = relative velocities including the antisymmetric
m.. etc = apparentmass, Eq. (3) terms from the gradient matrix @, Eq. (68)
7 = mass of displa::ed fluid [a]” = transformation matrix, Eq. (28)
m,, etc. = apparentdisplaced mass, Eq. (3) %ﬁ] = transformation matrix, Eq. (29)
N,, E,, D, = north, east, and down vehicle position o = small perturbation
P = 6 X 6 matrix of inertial angular velocities, = vector of generalized forces, Eq. (33)
Eq. (39) 0] = 3 X3 velocity gradient matrix, Eq. (21)
w = rate of change of quasi coordinates, Eq. (25)
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X, = perfect fluid added masses and inertia, 0 X/ 0u, etc.
U,, etc. = steady-state body axis relative velocity

Superscripts

b = referenced to the center of buoyancy

g = referenced to the center of gravity

I. Introduction

HE calculation of the motion of a rigid vehicle in an unsteady

heavy fluid is an important part of the analysis and design of
many vehicle systems, such as aircraft and submersibles. One of
the many problems in computing such motions is that, in a heavy
fluid, the motion of the vehicle and that of the fluid are coupled by
their respective inertias. To calculate the acceleration of the vehi-
cle we must first establish the fluid pressures around it, but these
are in turn dependent not only on the relative velocity between
the fluid and the vehicle, but also on the fluid’s inertial accelera-
tion and, most important, the acceleration of the vehicle, the very
thing we wish to determine. In a perfect fluid no forces are re-
quired to maintain steady translation of a vehicle, but if the vehicle
is accelerated, then additional forces are needed over and above
those needed to accelerate the vehicle in vacuo. These arise as a
result of the work done to increase the kinetic energy contained
in the fluid when the vehicle is translating at the new speed. In
fact, these effects appear as an apparent increase in the mass of the
vehicle and are often referred to as added mass. They do not repre-
sent fluid mass carried along with the vehicle, but instead represent
the additional energy that has to be transferred to the fluid during
acceleration.

The basis for analyzing the motion of a rigid vehicle in a perfect
fluid was establishedin the 19th century and is described by Lamb.!
In this approach, the troublesome calculation of the effects of the
fluid pressures on the surface of the solid is avoided by treating the
solid and fluid as one dynamical system. Lamb initially considers
the case of a single solid moving through an infinite mass of liquid
and where the motion of the fluid is entirely due to that of the solid.
As such, the motion is irrotational and acyclic. When Lamb con-
siders the impulsive wrench (i.e., the combined force and moment)
required to be applied to the solid to generate the motion instanta-
neously fromrest, he shows that it varies in exactly the same way as
the momentum of a finite dynamical system, even though the total
momentum of the vehicle and fluid is indeterminate.

As part of the analysis Lamb shows that the kinetic energy of
the fluid can be expressed as a quadratic form involving the three
translational and three rotational velocities of the vehicle. By the
use of the modern derivative type notation of naval architecture, the
total kinetic energy would be written as
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The 6 X6 matrix is symmetric and, hence, contains 21 unique co-
efficients. It is usually referred to as the added mass matrix. Lamb
uses this, along with Kirchhoft’s version of Lagrange’s equations
of motion, to give the equations of motion of a rigid vehicle in an
infinite stationary irrotational medium.

The derivations given by Lamb (the first edition was published
in 1879) were used as the basis of the equations of motion of air-
ships, for example, those of Jones and Williams,? and culminated
in the Williams and Collar® report on the loss of the R101. This
latter report was almost certainly the first practical, fully nonlin-
ear solution of a multistate flight dynamics problem. A form of the
equations of motion suitable for the dynamics of underwater vehi-
clesis givenby Lewis et al.* These equations were used successfully
by Lewis® to simulate the motion, in a steady sea, of the SEAPUP
remotely operated underwater vehicle. They have also been used
to model the motion of airships in a steady uniform atmosphere by
Cook et al.® and were successfullyapplied to simulate the motion of
the YEZ-2A airship by Nippress and Gomes.” Recently, however,
the author has had some difficulty in applying these equations to the
motion of other vehicles in steady or turbulent winds. In principle,
the equations should be applicable to not only underwater vehicles
and airships, but also to parafoils and airplanes. Two major prob-
lems of the equations in Lewis et al.* are that they do not reduce to
the small perturbation equations that are used for aircraft in gusts
(see Refs. 8 and 9).

II. Difficulties

The equations given by Lewis et al.* are of the form

Mi=F+F,;+F;+A @)
where A is the vector of the fluid dynamics forces and moments due
to relative velocity.

From Ref. 4, we define effective or apparent masses and inertias
as (the bar refers to the displaced fluid)

m, =

3

my =m — XL& - Xz't

my =m-=1Y,

my =m—1Y,

m, =m-—2, m, =m-— 272,

J=I-L, J.=1.+M,=1L,+N,

Jy =I}'_Mq Jox =sz+Np =I.+L;

J.=I1 -N, Jo =Ly + L, =1, +M, 3)

If the vehicle center of mass has body axis coordinates of (a,,
ay, a,), then the mass matrix is

[-Xx, -X, -X, -X, -X, -X,|[u]
Yy, -y, =Y, =Y, =Y, -V v
1 -Z, -Z2, -2, -Z, -—-Z, -2, w 1
T==[u v w p q r] " v Y P 4 ! =—x"M,x (1)
2 -L, -L, -L, -L, -L; -L; )4 2
-M, -M, -M, -M, -M, -M, q
-N, -N, -N, -N, —-N;, -N;|[Lrl
i m, 0 0 -X; am—X; —aym— X,_
0 m, 0 —am —Y, -Y, am—Y,;
M= 0 0 m, am—272Z, am—2Z, -Z; @)
_Lu —a,m — LL’* aym - Lw "xx _‘,xy _‘Iz.x
am — ML& _ML" —a,m — Mw _‘,xy ‘,\) _‘,yz'
__aym - Nu a,m — NL’* _NW _‘,zx _‘,yz' "ZZ |
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the dynamics vector is given by

F, =

—m,wq + myrv + m[ax(q2 +7r?) —a,pq — azrp]
—mour +m_pw + m[—aqu +a,(p?+r?) - azrq]
—m,vp + m.qu + m[—axrp —a,rq + az(q2 + pz)]
== Jrq + J,.(q> = r?) + J.pq = Joy pr + m[—a,(vp — qu) + a.(ur — pw)]
—(Je = J)pr = Jy.pq + J (r* = p*) + Joyqr + mla,(vp — qu) —a,(wq —rv)]
| =(Jy = Jogp + Jy.pr = Jeqr + 1, (p* = ¢*) + ml=a,(ur — pw) + a,(wq — rv)] |

and if the coordinates of the center of buoyancy are (b,, by, b.), then the fluid motion vector is

Several difficulties arise with the preceding equations. The most
obvious is that if the fluid is unsteady, then the fluid motion vector
F; is a function of the fluid inertial velocity as well as its inertial
acceleration, and this is counterintuitive. This can be clearly seen
by giving the body the mass and inertia properties of the fluid that
it displaces. In that case the relative acceleration between the body
and the fluid should be zero, but the preceding equations do not
reduce to this. A less obvious difficulty arises with the mass ma-
trix M if we attempt to apply the equations to a vehicle such as a
partially constrained dynamic wind-tunnel model. Then it would be
expected that the forces and moments due to the vehicle’s inertia
would depend on its inertial acceleration whereas the forces and
moments due to the fluid acceleration (the added mass and inertia
terms) would depend on the relative accelerationof the fluid and the
vehicle. Thus, we might rearrange the equations in the form

Mix+M%, =-Mi; +F,+F; +A+F 7)
where M, is given by Eq. (1),
X, =x—x; (8)

are the relative velocities of vehicle and fluid, and the vehicle mass
matrix is

m 0 0 0 ma,  —may
0 0 —ma, 0 ma,
0 0 m ma,  —mdy 0
M. = 0 —ma, ma, I, —I, 1. ©)
ma, 0 -ma, —I, I, -1,
—ma,  mdy 0 =1, -1, I,

The fluid motion and fluid acceleration vectors in Eq. (7) can be
combinedinto a new fluid motion vector. This results in most, but not
all, of the accelerationterms canceling, and the fluid motion vector
still remains a function of the inertial fluid velocity. The source of
this is partly because in the derivation used in Lewis et al.* some,
but not all, perfect fluid relative velocity terms have been absorbed
into the vector A. As a result, a full set of equationsinvolving all of
the perfect fluid terms is required prior to any rearrangement such
as that just given.

The equations of motion used for airplanes were first set out by
Bryan.!® He used Euler’s version of Newton’s equations of motion
and expressed the fluid forces and moments as linear functions of
the perturbations of the translation and rotational relative velocities
from a steady state. In 1921, Cowley and Glauert!! noted that a
downwash derivative M,, was required to explain the anomalous

—Lyiiy — (b + L)y + (byn — L)W, + m[by(vyp —quy) — b (usr — pwy)]
(b + My)iiy — My, — (b — M)W, + m[=b,(vyp —quy) + b, (wpq —rvy)]
| —(bym + Ny + (b — Ny, — Myw p +mlb (usr — pwy) —b,(wyq —rvy)] |

&)
Mgy + MW pq — My ]
myVe+ mu;r —mpwy
mWwe+myv,p—im,quy 6)

values observed for the M, derivative in airplanes. This derivative
was due to the convection past the tailplane of the vortex sheet shed
by the wing during unsteady motion. Subsequently, workers who
were interested in flutter investigated the unsteady aerodynamics
of wings (see the review by Lyon'?) and were able to show that
for most flight dynamics situations the unsteady lift effects of the
wing could be approximated by an added mass plus a frequency-
dependent term. The frequency-dependentterm was constant for
small values of the reduced frequency typical of airplane dynamics.
For most airplanes, these terms are small and are usually ignored.
As aresult, it is now standard to augment Bryan’s model'® with Z,;
and M,, derivatives, whose main component is due to the tailplane
flying in the lagged downwash field of the main wing.

A major addition to Bryan’s equations'® was the inclusion of
atmospheric winds and gusts. This was first detailed by Wilson'?
and details of more modern extensions are given by Etkin'* and
Mulder and van der Vaart.” The basis of these descriptions is the
assumption that the forces and moments due to gusts arise solely as
a result of the relative motion of the vehicle and the fluid. Treating
the airplane as a point, the relative fluid velocity can be represented
by the difference between the vehicleinertial velocity and the fluid’s
inertial velocity,

— T _
X _[ u vp W, pr g4y I ] =X — X,

=lu v w p g rl"=lu v, wg p; qg rl

(10)

The p, g, and r terms were includedin the gust velocitiesby Wilson
“so as to take into account any possible rotational motion in the
gusts.”'® As a result the gust contributionto the forces and moments
is represented by

[ox ] [x. x x, x, X, X |[on]
5Y Y, Y, Y, Y, v, Y. ||o,
sz| |z, z z. z, 2z, Z ||ow
st | |L, L, L, L, L, L ||
M M, M, M, M, M, M, || &,
o] [N NN, N, N, N |||
= A,0x, =A.x — A.x, (11)

A further complication is to recognize the presence of the accel-
eration derivatives and include in the gust forces and moments
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additional terms due to the fluid’s inertial acceleration. Such terms
might be similar to

M, x, (12)
but should other terms be included as well?

Later authors such as Stengel,® Etkin'® and Mulder and van der
Vaart’ have gone further and have included the gust penetration
effects by representing that the vehicle is, in general, traversing a
velocity field containing gradients. This is taken as being equivalent
to the vehicle having an apparent rate of rotation. Such apparent
rotation rates are then applied to the vehicle aerodynamic model
given earlier. A question that then arises is, should the apparent
rotationrates be used in the fluid accelerationterms suchas Eq. (12)?

The remaining modern extension has been to replace the linear
small perturbation model of the aerodynamic forces and moments
with full force models, often based on empirical results from wind
tunnels, etc. These typically assume that the forces and moments
can be written in terms of the relative linear and angular velocities.
With such a formulation the question again arises, how should the
apparent rates of rotation be used in such a model? Just adding
in terms into the equations may not be correct. Additionally, the
apparent rotation rates due to the velocity gradients can be due to
both irrotational and rotational motion of the fluid, and the method
makes no distinction. Finally, the equations of motion contain terms
that are the product of the rotation rates and the velocities, and it is
not clear whether or not these effective rotation rates should appear
at these points in the equations.

In summary, the equations of motion of lifting and buoyant vehi-
cles have developed along similar but differentlines ever since their
first introduction. They are clearly closely related, but the equa-
tions used for airships and underwater vehicles do not reduce to
those normally used for airplanes. Both sets of equations were
originally derived in a systematic way, but subsequent enhance-
ments have been performed in a rather piecemeal way. The diffi-
culties this has produced have lead to confusion, such as that in the
Pretty and Hookway'® Note questioningairship equations, or com-
plex difficulties as shown in the correspondencebetween Etkin and
D’Eleuterio'” and Jones and DeLaurier.'

There have also been difficulties when applying the equations to
nonconventional situations. Recently, for example, the author has
been involved with the dynamics of parafoils. These are lifting vehi-
clesoflow density, butthey have substantialadded mass, and itis not
clear how to setup theirequations of motion for unsteady conditions.

As aresultof the precedingdifficulties, this paper aims to provide
a common set of equations for both buoyant and lifting vehicles in
an unsteady fluid and to suggesta more rational means for including
empirical data into the equations.

III. Alternative Derivation

As mentioned earlier, Lamb' addressed the problem of a vehicle
moving in an infinite fluid and was able to show that the impul-
sive wrench need to start the motion from rest varied in the same
way as the momentum of a finite system. He extended the result to
the problem of a perforated vehicle moving in fluid contained in a
large vessel, which may also be perforated. In that case the fluid
is multiply connected, and cyclic motions through the perforations
are allowable, independent of the motion of the vehicle. Such cir-
culating motions can provide velocity gradients in the flow. Taking
the arguments further, we can apply impulsive forces to the vessel
so as to give it, and its fluid contents, a prescribed velocity and ac-
celeration. As a result, the fluid inside the vessel will have velocity
gradients plus a bulk velocity and a hydrostatic pressure gradient
due to the vessel’s acceleration.

The total energyis obtainedby applyingan approximationused by
both Lamb' and Taylor,'® and the equations of motion of a rigid ve-
hiclein anonuniformflow are derived viaLagrange’s equations.The
perfectfluid forces and moments in the resulting equations are iden-
tified and separatedinto inertial and relative velocity effects. Finally,
gust penetrationeffects are related to the velocity gradientsto repre-
sentthe variationoverthe vehicle of the undisturbedmoving fluid ve-
locities. These are combined with the perfect fluid terms and the vis-
cous forces and moments thatare functionsofrelative velocity alone.

Enclosing
Vessel

Vehicle
Body Fixed
Axes

Velocity,

Fig. 1 Vehiclelocated in alargeaccelerating vessel containingcurrents
and velocity gradients.

A. Perfect Fluid Equations

Considerarigid vehiclemovingin a perfectfluid thatis circulating
in a multiply connected vessel, with the vessel itself accelerating.
We shall consider a set of axes fixed in the vehicle’s body, plus
a nonaccelerating set of Earth axes (see Fig. 1). We invoke the
approximationused by both Lamb' and Taylor'? that if the vehicle’s
velocity is made equal to the velocity of the fluid, and its mass is
made equal to that of the displaced fluid, then the energy is the same
as it would be if the vehicle were absent and the space occupied
by fluid. This implies that changes in the circulating fluid velocities
over the length of the vehicle are small compared to the velocity of
the stream in its neighborhood.

We also define the following quantities evaluated in vehicle body
axes:

x=(@uv,w, pqnr’
which represents the vehicle’s velocity relative to the Earth axes,
xp=(upvpws, 00,07
the vessel’s velocity relative to the Earth axes, and
X =Ue, v, W, 0,0,0)

the steady circulating velocity relative to the vessel that would exist
if the vehicle were absent.
‘We also have, therefore, in Earth axes,

.X'f Z(Nf, Ef, Df,O, 0,0)
and we define the relative velocity as
X, =X—X;—X (13)

This way of modeling the motion of the fluid is to some extent
overdetermined,and we are free to make choices as to how exactly
x; and x. are chosen. For example, if we are considering motion in
a steady current with no gradients, we can setx. =0. Alternatively,
if we are considering no current but with gradients, then we can set
Xy = —X..

We also define the mass matrix of the fluid displacedby the vehicle
(strictly speaking, replaced by the vehicle),

m 0 0 0 mb,  —mb,
0 m 0 —imb, 0 mb,
i, = 0 0 n b, —inb, 0
0 —mb,  mb, 0 0 0
mb, 0 —mb, 0 0 0
| —mb,  mb, 0 0 0 0 |

(14)

The moments and products of inertia in this matrix are zero because
the matrix represents the kinetic energy of the fluid that is replaced
by the vehicle, and, being irrotational, the fluid has zero rotational
energy.

We can then write the Lagrangian of the system, including the
bulk translation of the multiply connected fluid, by building up a
description of the total kinetic energy via the following steps:

1) Following Lamb (§ 139), we consider the case where the fluid
has cyclic irrotational motion through channels in the enclosing
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u
Xf %

b) d)
Fig. 2 Stages in developing the Lagrangian.

vessel and assume thatitis independentof the motion of the vehicle
itself (see Fig. 2a). As shown by Lamb, such cyclic irrotational
motion canbe impulsively generated from rest via suitable pressures
distributedacrossimaginary diaphragmsplaced across the channels,
so as to render the space singly connected. We shall denote the
associated kinetic energy by K.

2) Impose an impulsive force on the vessel so as to accelerate it
tox; in this case the additional kinetic energy is M fxTx 712, where
M is the mass of fluid contained in the vessel (see Fig. 2b).

3) Take the fluid mass that occupies the space that will ultimately
be occupied by the vehicle and accelerate it, via a set of impulsive
pressures over its surface, to the same speed as the vehicle (see
Fig. 2¢). In that case, the kinetic energy will increase on two counts,
first the increase in kinetic energy of the fluid mass that will be
ultimately replaced by the vehicle and second the increase in ki-
netic energy of the surrounding fluid due to the increased velocity.
The latter, of course, can be representedin terms of the added mass.
Thus, the extra energy is x' (M? + M?)x"/2 where the superscripts
b refer to values taken about the center of buoyancy of the object,
that is, the center of gravity of the displaced fluid.

4) Finally, we remove the fluid from the space that is to be occu-
pied by the vehicle; this reduces the kinetic energy by x’ Mbx/2
and replacesit with the actual vehicle (see Fig. 2d), thereby increas-
ing the energy by =ngMf'xg/2, where the superscript g refers to
the center of gravity of the vehicle.

In equation form, the total kinetic energy associated with the
foregoing process is given by

2T =2K, + M yxx; +xt' (M + b1?)x! +x¢" Méxt —x"" Mx’
(15)

The fundamental approximation in Eq. (15) is that x,b.T (M +
MP?)x" /2 represents the kinetic energy of the fluid replaced by the
vehicle.If the circulating fluid has no velocity gradientsin the vicin-
ity of the vehicle, then the expressionis exact. If velocity gradients
are present, then the expression will be approximately correct so
long as (Av/ V)? <1, where Av is the change in circulating fluid
velocity over the length of the vehicle and V is the local velocity of
the stream. We shall also see later that neither K, the energy of the
circulating fluid, nor M, the mass of circulating fluid, enter into
the final form of the equations.

We can relate the velocity vector of the vehicle’s center of gravity
and center of buoyancy to the velocity vector of the body axis origin

by
14 , [1 B 06
=l 1 ff =l 1|*

7 [aT oT oT oT oT oT

oy ON, 3E, 8D, oN, oE, oD,

where
0 a, -—a, 0 b, -b,
A=|—-a, O a, B=|-b, O b, 17
a, —a, 0 b, -b, 0

The elements of the added mass matrix change with any change in
the position of the axis origin. When we consider the kinetic energy
of the fluid as constant, it can be shown that the added mass matrix
for an arbitrary axis origin is given by

w9, B (1
"T|-B 1|70 I

Failure to bear this in mind can lead to serious errors, as will be
shown in Sec. III.B.

Now the relative velocity between the fluid and the vehicle at the
vehicle’s center of buoyancy is given by

¥ =xt—x;—x (19)
Because of the velocity gradients in the circulating fluid, the cir-
culating velocity that would exist at the center of buoyancy if the

vehicle were absent is different from that which would exist at the
body axis origin. As a result, we can write

(DT
xf =x.+ |: 0 i|b (20)

and

ou. 0v. ow,

0x 0x 0x
O=| % v W 1)
oy oy 0oy
ou. 0v. ow,
0z 0z 0z

Because the flow is irrotational the preceding matrix is symmetric.
Substituting Egs. (16) and (20) into Eq. (19) gives

I B (ol
? = = b 22
The Lagrangian can now be written as

@\ .

T
X (x,. — |:CI()) i|b> +xT(M; — M))x (23)

where all of the items are referred to the body axis origin.

The vehicleequationsof motion with the extra terms for the fluid’s
motion can be derived using Lagrange’s equations. However, the
preceding Lagrangian is not given in terms of generalized coordi-
nates and their corresponding velocities, and so the conventional
form of Lagrange’s equations cannot be used.

This problem belongs to a class that can be solved by the use of
quasi coordinates, and this general class of problemsis described by
Whittaker?® and Meirovitch?! The true coordinates of the current
problem can be taken as

q=(N.,E;,D.¢,0,y,Nsy, E;, Dy, N, E., D.) (24)
whereas the rates of change of the corresponding quasi coordinates
are

W=, V,W, D, q,F s, Vi, Ws, U, Ve, We) 25)
Lagrange’s equations in matrix form are

where

_ _ _ _ _ _ T
T T T T T T
) ) ) ) ) ) } 7
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and the Lagrangian T =T (¢ q) is expressed in terms of the gen-
eralized coordinates and their velocities, and Q represents the gen-

T +@P+WT, +W, T, +W.T.-T,=F (40)

eralized forces. To convert this to quasi coordinate first express the where,
rates of change of the quasi coordinates as linear combinations of
the rates of change of the true coordinates, oT oT oT T
. =|l— — — 0 0 0
w=[a"g (28) Ty duy vy owy
Then the inverse relation is
T
g = 29 oT oT oT
¢ =[Blw 29 T, = 00 0 (41)
For the present problem we have ou. ov. ow,
u cos 6 cos y cos Osin y —sin @ N,
v | = |singsinfcosy —cos¢siny singsinfsiny + cosdcosy sin¢g cosd E, (30)
w cos¢gsinfcosy +singsiny cos¢sinfsiny —singcosy cos¢cosO D,
P Lo sin 0 ¢ ;o_for ar ot ot ar or)
qg|=1]0 cos¢ singcosO 0 3D ““|ou ov ow op dq or
r 0 —sin¢ cos¢cosO v

plus equations similar to Eq. (30) for [u. v. w.]' and
[uy vy wel™.
The preceding equations define the [a] matrix:

E 0 0 0
0 R 0 O
T = 32
[a] 0 0 E 0 (32)
0 0 0 E
and the 3 X3 matrices E and R are those of Egs. (30) and (31),
respectively.
Premultiply Lagrange’s equation by [B]” to give
(BT, - T,1 =[p'Q =TI (33)
and we can write
517
T, =w|i—i| T, =[a'T, (34)
0q

where T =T(w, q) is the Lagrangian expressed solely in terms of
the generalized co-ordinates and the quasi-coordinate velocities.
Therefore,

(B ([T, + [6]T, — T,] =1 (35)
but
_ 21"
T,=T,+ w|:a—qi| T, (36)
and writing
(BI'T, =T 37

gives

After considerablealgebraic manipulationand the choice of follow-
ing matrices

[0 =+ ¢ 0o 0o o]
0O -p O 0 0
P= -q p 0 0 0 0
0 0 0 0 -r g¢q
0 0 0 r 0 —-p
L 0 0 0 —qg p 0

oT T oT oT oT oT]"
s = (42)

ox oy 09z dE on oC
and x, y, z, &, n, and ¢ are linear displacements and angular deflec-

tions about the body axes.
The equations of motion (40) can be written as

T, =F—@P+WT,—W,T, —W.T.~T, (43)

These equations are similar to Lamb’s, but with fluid motion and
velocity gradient terms included. They consist of six equations, al-
though the problem has 12 degrees of freedom. The remaining six
equations are the equations of motion of the multiply connected re-
gion. For the present problem, the motion of the region is regarded
as prescribed and, hence, the equations are not required.

Differentiating the Lagrangian (20) and remembering that
X, =X —X; —X. gives

_ (ol _
T, =(M, +M,-)<x—xf -x, - |: 0 i|b> +(M; — M;)x

T, =M, + M) —x;) + (M; —M)x = (M, + M;)x

_(M)'+Mi)xf
POV LAl ey (e L
r=Msxy 0 0( , Dl x—xr—x. 0
== |1 g + 5y (v-x, -5 - |2 |5 (44)
c = 0 0( r i) X xf X 0

Substituting in Eq. (43) gives
(M, + M)x — (M, + M)i,

(DT
=F—(P+ W)(M,.+M,-)<x,. - [ o i|b> —(P+W)

_ _ (o2
X(M; + M)x + W,(M, + M,-)(x,. - [ o } b)

_ (ol
+W. M, + M,-)(x,. - |: 0 i|b> + T, 45)
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
W= (39)
0O —w v 0 0 O
w 0O —-u 0 0 O
—v 0 0 0 O

W,, Wy, and W,, are similar, but using x,, x s, and x.. the foregoing expressions yield the Lagrangian equations of motion,
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or writing W, =W — W; — W, gives the equations of motion as

(M, + M)k =F — (P + W)(M, = M,)x + (M, + M,)x,

_ (od)
-(P+WHM, + M,-)(x,. - |: 0 i|b> + T, (46)

The remaining term to be considered is 7: This is the change in
energy resulting from quasi-coordinate displacements, that is, dis-
placements along and around the body axes. The corresponding
forces and moments arise from the velocity gradients in the circu-
lating fluid. The only componentof the Lagrangian that contributes

1S
7\ oy
(- [2To) wnsio(s-[2]s)

and we have from Eq. (22)

DR

As aresult, expression (47) can be written as

A R TYAA Ld I 49)
X g g |M M |

or

(xb —xf—xf)r |:; (I)i|(M,. +M,-)|:3 ] i|(xb —x; —xf) (50)

Differentiating Eq. (50) with respect to the quasi coordinates gives

T——(D 0M+M —(Drb (51)
s = —B(D 0 ( r i) X 0

As a result, the final form of the equations of motion becomes

(M, + M)k =F — (P + W)(M, = M,)x + (M, + M,)x,

_ (od)
—(P+ WM, + M,-)<x,- - [ o } b)
| @ 0M+M —(Drb (52)
—B(D 0 ( r i) X 0

It is instructive to examine these equations. The fluid motion
terms (M, + M;)x ; depend only on the fluid’s inertial acceleration
and do not depend on the fluid’s inertial velocity, thus solving one
of the problems outlined in Sec. II. In addition, both the added
mass of the vehicle and the mass of displaced fluid are involved
in the expression. The mass matrix is the conventional (M, + M,),
and the dynamics vector —(P + W)(M; — M;)x (that is, terms due
to rotating body axes) involves the difference between the vehicle’s
mass and that of the displaced fluid. Unlike the case of the equations
in Sec. II, giving the vehicle the same mass and inertias as the
displacedfluid resultsin the relative acceleration becoming zero, as
would be expected.

The final two terms in Eq. (52) are the perfect fluid forces and
moments that are a function of the relative velocity and the velocity
gradients alone. They can be combined and expressed in terms of
the relative velocities at the center of buoyancy to give

0 P+Wb+q)0 |t )
B I "o o Ty o] )t
(53)

where the superscriptd implies quantities evaluated at the center of
buoyancy.

Equation (53) represents a set of forces and moments that act at
the center of buoyancy and that are transformed to the origin by

the left-hand matrix. If the matrices in the preceding expression are
partitioned into 3 X 3 sub matrices (written in nonbold type) then
the equations of motion become

(M, + M)x =F — (P + W)(M;, — M;)x + (M, + M,-)xf

_[ 1 0} |:(P+<I))(n‘11+M1bl)

(P +d)M?, b
-B 1 WPM?b, + PM?,

WMy, + PMy, |
(54)

If the mass of displaced fluid is negligible and the gradientsare zero,
Eq. (52) reverts to the conventional airplane equations of motion:

Mi =F — (P + W)Mx (55)

B. Gust Penetration Effects

The terms involving ® representthe perfectfluid effects of veloc-
ity gradients. With the axes at the center of buoyancy, the moments
due to the gradients are zero and the forces are

u.(m—-X,;)—v.X;, —w,X;, — pL, —qM, — rN,
O —-uY,+v,h-Y;,)—w,Y, — pL, —qM,;, —rN,
-u,Z,—v,Z,+w.(m—-2;)—pL;, —gM, —rN,
(56)

If we consider a stationary axisymmetric vehicle with no rotation,
the x force component becomes

ov ow } (57)

0
X =u,} 07 - X)= - X, — — X, ==
ox 0x ox

which is the same result as that obtained by Lamb! and Taylor.!?

If the vehicle is moving in a steady but nonuniform stream, there
will be time-varying relative velocity components due to the vehi-
cle’s translation through the fluid gradients. The perfect fluid effects
of these gradients are already included in the equations as shown
earlier, but in many situations such as wind shear and turbulence
the velocity field will not be irrotational. In this case the matrix of
gradients @ can be split*? into symmetric and antisymmetric parts,
with the symmetric representing the irrotational strain rates [used
in Egs. (52) or (54)] and the antisymmetric representing vorticity.
The effects of such vortical gradients is not included in the preced-
ing equations. A clue as to how to handle the vortical components
is given by observing that the upper-left submatrix of P is anti-
symmetric in p, ¢, and r and that it combines linearly with @ in
Eq. (54). This suggests that any skew symmetric part of @ can be
treated as similar to P. In effect, such vortical velocity gradients can
be treated as effective rotation rates because they produce velocity
distributions similar to those due to rotation,

T _
(P ar 1l _|:ay 0z 0z 0x ox oy

ow, 0V, ou, ow,. oV, au{|T

=(® - ") (58)

These effectiverotationrates can be carefully applied to the vehi-
cle’s rotary derivatives.Care must be taken, however, because not all
of the gradientshave the same influence. In an airplane, for example,
the vertical dimensions are small compared to the tail arm and the
span, and so the rotary derivatives are due mainly to lift associated
with changes in the incidence of the tailplane and the wing tips, that
is, the result of x and y gradients. As a result, the variation with z
should be ignored, so that

T
ow ow ov ou

r_ |22 9% 2% 9% 59

[Pf qy rf] |:ay’ ox . ox ayi| (59)

This is the linear field approximation used by Etkin.!?
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If the vehicle has a velocity U (along the x axis) relative to the
fluid,

T
ow Ww* v* ou

T — L = < 60

[Pf qr rf] |:ay’ U U ayi| (60)

where the starred terms are the apparent rate of change due to the
motion of the turbulence field past the vehicle, not the inertial accel-
erations of the undisturbedfluid. The precedingexpressionis added
to the vehicle rotation rates to give the effective relative angular
velocity for use in the aerodynamic calculations (it being solely a
function of the relative velocities). This avoids one of the problems
mentioned earlier with the formulation used in Ref. 4, which had
fluid velocity terms in the fluid motion vector and, which made it
unclear as to how such effective rotation rates could be included in
the equations. As mentioned earlier, Egs. (52) and (54) have no such
terms in the fluid motion vector.

-(P+ W,’_’)<Mf? +1m [3 ngff

-rY, +qZ;

r(X,; —m) —pZ, rXy, — pZ,
—q(X; —m) + pY,

-w, Y, +v,Z, —rM,; + gN,

w,X; —u,Z, +rL; — pN,

v, X; +uY,—qL, + pM,

-rY;, +qZ, -r¥;, +qZ,
rX,—pZ, rX, —pZ,
—qX; + pY; —qXy + pY,

-w,. Y, +v,Z, —rM, +gN,
w, X, —u.Z;+rL, —pN,
v, Xp+u,Y;, —ql; + pM,

w, X, —u,Z; +rL; — pN,

The distinction between the real and apparent fluid accelerations
is important because, in some derivations. the use of the frozen
turbulence approximation leads to them being lumped together so
that

Zo, =2, = Z,11, (61)

In the case of a moving sea or nonfrozen turbulence, this is incorrect
and the preceding treatmentkeeps them distinct. Thus, the problems
outlined in Sec. II can be avoided.

One important point is that the linear field approximation must
break down at some point as the wavelength of the disturbance
reduces. This applies to both the perfect fluid effects and the vortical
effects. The basic approximationused to establishthe kinetic energy
was that if the vehicle velocity was made equal to the velocity of the
fluid, and its mass was made equal to that of the displaced fluid, then
the energy was the same as that which would have existed had the
vehicle been absent and the space occupied by fluid. This implies
that (Av/ V)? <1, where Av is the change in the circulating fluid
velocities over the length of the vehicle and V is the velocity of the
stream. If this is not so, then more extensive models may be needed
at this point depending on the application.

The acceleration-depencent terms or added masses arise from the
work done in acceleratingthe perfect fluid. In a real fluid, additional
acceleration effects such as the increase in vorticity and its convec-
tion past tailplanes, etc., come into play. It is assumed that all such
effects are added into the corresponding perfect fluid added mass
terms. This is a reasonable assumption for streamlined vehicles sup-
ported by buoyancy, but is less exact for vehicles with substantial
lift such as airplanes. The unsteady aspects of lift generationand the

—r(Yy, —m) +qZ;
—qX; + p(Yy —m)
—W,-Yv + V,-Zﬁ - rML-, + qNL

w, Xy —u,Z; +rL, — pN,
v, X, +u,Y, —qL; + pM,

-w,. Y, +v.Z, —rM; +qN,

v, Xy +tuY,—ql;, + pM,

nature of the & derivatives are discussed by Etkin'4 and Hancock *?
and whereas the preceding assumption is not strictly correct, it is
still a necessary working approximation for many situations.

C. Use of External Fluid Dynamic Data

The last term in Eq. (54) is a function of the relative velocities
only and could, therefore, be absorbed into the vector F (external
forces and moments) as the perfect fluid components due to the
relative velocity between the fluid and the vehicle. In many cases
the elements of the vector will be derived empirically from wind-
tunnel or tank facilities and will include some or all of the perfect
fluid effects. In addition, parts of F may be determined by analytical
and computational models of the relative velocity effects. These in
turn may contain perfect fluid components. The nongradientperfect
fluid relative velocity terms that could be absorbed into the fluid
dynamic vector are (the b superscripthas been dropped in the large
matrix)

—rYy +q(Z,, —m)
rX, — p(Z, —m)
—q Xy + pYy
-w, Y, +v,.Z, —rM,; + gN,
w, Xy, —u,Z, +rL;, — pN,
v, X, +uY, —qL, + pM,

_rYf‘ + qZ)"
rX, —pZ,

- X}" + Y)
42T p X (62)

—-w, Y, +v,Z; —rM; +gN; | '
w,X; —u,Z. +rL; — pN;
v, X, +u,Y, —qL;, + pM;

Dependent on how the elements of the F vector are determined,
some or all of the preceding terms may already be included, and care
must be exercised that terms are neither omitted nor accounted for
twice. The risk of double accounting can be seen by consideringan
axisymmetric vehiclein a turn withw = p =¢ =0. Then the perfect
fluid yawing moment is, from Eq. (62),

N =—v,. Xu, +u,Y;v, (63)
Now, if the vehicle is sideslipping at an angle S,

sin =v,/ Vit cos B =u,/ Vig

Hence,
N = (V2 /2)(Y, - X,)sin2B (64)

that s, this is the classic perfect fluid moment given by Munk,?* and
depending on the source of the data this may already be included
in the vector F. This danger was noted by Lingard,>> who derived a
set of equations for the longitudinal motion of a parafoil and rightly
noted that previous investigators had erroneously left terms like
Eq. (63) in the equations of motion, while at the same time using
wind-tunnel data for the pitching moment, thereby double account-
ing. Lingard removed the terms from his equations, but without cor-
recting the rest of the added mass matrix for axes not at the center of
buoyancy (as described earlier in Sec. I[II.A). As a result, Lingard’s
equations predict a motion that is dependent on the chosen axis
position, which is clearly a physically incorrect result. Replacing
Lingard’s equations with those just derived removes this problem.
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In the same side-slipping case there is also a side force from
Eq. (62),

Y=urX,-m)—-vrX; (65)

and any empirical data used to calculate the side force, such as
whirling arm results, may or may not have been adjusted for this
centrifugal term.

As can be seen from the preceding examples, the absorption of
the perfect fluid terms into F has to be performed with considerable
care, and the details will vary depending on the application and the
nature of the data used for the F vector. The choice is not arbitrary
and must be performed correctly.

IV. Small Perturbation Equations

Assume that the steady wind components are zero and that there
isno initial sideslip. The vector F in Eq. (52) is the vector of external
forces and moments and, in this case, we will expand it to

F=F, +A,{x;} (66)

where A, { } is a vector function giving the nonperfect fluid forces
and moments that are a function of the relative velocity x*, where

X =y, Ve, W, P = Pp g —qpr—rp)" (67)

thatis, the relative velocitiesincluding the antisymmetricterms from
the gradient matrix @. The vector F, represents any other external
forces and moments that are applied to the vehicle such as gravity.
We will now consider small perturbations about a steady nonro-
tating flight condition. Let the vehicle state vector be given by

x =x,+ & (68)

and the fluid motion state by

Xp=xp+ &, (69)
so that

X, =X,0 t &, (70)
and

&, = ox + dx, (71)

The initial relative velocities are
x,0 = [Us0, Vio, Wyo, 0,0, 0]" (72)
and combining the fluids bulk and circulating motions we write

X, =X —X;—X.=X—X, (73)

so that
x0 =[Usg + Ugp, Vo + Vo, Wy + Wy, 0,0, 017
= [Uy, Vo, Wy, 0,0, 017 (74)

The perturbed equation (52) is
(M, + M)k = (M, + M;)8k; XF + 6F, + A, {x}, + ax}}

—(8P + W, + SW)(M; — M;)(x, + &)

N 5P+Wb+5wb+q)0
-B 0 0 r 0 0

X (Mf +m [(I) gD () + &) (75)

where for small perturbations the nonperfect fluid forces and mo-
ments are given by

Ay, + o) =A{x, ) + A8 (76)

and A, is the small perturbation aerodynamic derivative matrix for
the steady-state flight condition. Remember that this only contains
the nonperfect fluid terms at this stage.

Because we have perturbed about a steady state, we can write
Eq. (75) as

(M, + M))& = (M, + M;)&t; X 6F, + A, &

—(8P + SW)(M; — M;)(xo) — Wo(M; — M;)dx

_[—IB g}{(5P+5Wf)<Mf+m[g ng,b.O
o e o]

The perfect fluid gradient effects can be seen to be due to the term

® N mlt O s (78)
o of\""T™o o)

that is, a set of forces only, acting through the center of buoyancy.
Because these are just the perfect fluid effects, the symmetric part
of the gradient matrix is used; the antisymmetric part and its effects
are contained in A, dx;.

When we make the usual symmetry assumptions for airships and
airplanesand substitute, the precedingexpressionsprovide the small
perturbation equations:

_ Do _
(M, + M)& =(M, + M;)5%, + 5F, + A, &, + A, & — [ 0 o} (M, + M,)éx,

000 0 —Wo(m —m)  Vo(m—ia) |
000 Wy(m-—m) 0 —Uy(m —m)
000 —Wam 0 Upa,m
000 —-Vyam =Uyam-—Wyam Voa,m
1000 —Wam 0 —Uya,m
o0 0 0 ~W,o(m = Z,) VoG =Yy ]
0 0 0 Wio(m — Zy,) 0 =U,o(m — X;)
—Vo(m =Y, U,o(m — X,
+ 0 0 0 )O(m L) )O(m u) 0 5Xr (79)
0 WYy —Zy) Vio(Zy —Yy) WY, Vio(Ns + Z)  —UoM; =W o(M,, +7Y,)
W;-O(Xu - Zw) 0 UrO(XL't - Zw) - rONL" _U;-OZq + W;-OXq VrOLL'*
L rO(XL't - YL) _UrO(XLl - YL) 0 U;-O(Mu + Yp) + W)‘OMW _V)'O(LL'* + Xq) UrOYi' _
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These are the standard small perturbation equations for airships,?
but with unsteady fluid motion and velocity gradientsincluded. Re-
member also that they include the perfect fluid effects mentionedin
Sec. I1I.C.

If the displaced mass is put to zero and all of the added masses
ignored, apartfrom Z,, and M,;, then the standard small perturbation
equations for the motion of airplanes in gusts are obtained (see
Refs. 8 and 9), including the effects of fluid motion and gradients.

V. Conclusions

A new formulation of the equations of motion of a rigid vehicle
in an unsteady heavy fluid has been derived that avoids the prob-
lems of earlier sets of equationsused for submersibles, airships, and
airplanes, particularly with regard to the moving fluid case. This is
achieved by clearly separating out the inertias, the added masses,
and the relative velocity effects and, by so doing, removing some
of the problems encounteredin the past. In addition, velocity gradi-
ents are taken into account in a way that links both irrotational and
rotational effects.

Classic perfect fluid results are recovered and the source of error
in an existing parafoilmodel s also revealed. The small perturbation
equationsrevertto those thatare normally used for both buoyantand
lifting vehicles, but with the addition of fluid motion and gradient
terms. As a result, the formulation provides a common set of equa-
tions of motion for describing the motion of underwater vehicles,
airships, parafoils, and airplanes in a moving fluid.
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