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Equations of Motion of a Vehicle in a Moving Fluid

Peter G. Thomasson¤

Cran� eld University, Cran�eld, Bedford, England MK43 0AL, United Kingdom

Dif� culties with the differing sets of equations used for submersibles, airships, and airplanes are removed by
treating the effects of the inertial and added masses as separate functions of the inertial and relative velocities. The
equations of motion of a rigid vehicle moving in a perfect � uid are then derived for the case where the � uid mass
is accelerating and contains velocity gradients. The classic perfect � uid moments and forces for straight, curved,
and convergent � ows are recovered. It is shown that the differing sets of equations normally used for submersibles,
airships, and aircraft can also be recovered as special cases, but in an augmented form that includes the effects
of � uid motion and velocity gradients. In addition, it is shown how the resultant perfect � uid equations may be
augmented to include viscous forces and moments derived from other theoretical or experimental sources.

Nomenclature
A = 3 £ 3 matrix of center of gravity coordinates,

Eq. (17)
Ae = 6 £ 6 small perturbation aerodynamic

derivative matrix
Av = vector of nonperfect � uid forces and moments that

are a function of the relative velocity x¤
r

a = vector from body axis origin to the center
of gravity

ax , ay , az = body axis coordinates of a
B = 3 £ 3 matrix of center of buoyancy

coordinates,Eq. (17)
b = vector from the body axis origin to the center

of buoyancy
bx , by , bz = body axis coordinates of b
E = direction cosine matrix, Eq. (30)
F = 6 £ 1 vector of body axis components of the

external forces and moments
Fd = 6 £ 1 vector of body axis forces and moments due

to rotating axes, the dynamics vector
Fe = steady-state F vector
F f = 6 £ 1 vector of body axis forces and moments due

to vessel velocity
I = identity matrix
Ix x , Iyy , Izz = roll, pitch, and yaw inertia
Ix y , Iyz , Izx = products of inertia
Jx x , etc. = apparent inertia, Eq. (3)
K0 = kinetic energy of undisturbed circulating

� uid mass
L , M , N = body axis moment components
lt = tail moment arm
M = 6 £ 6 mass matrix including added masses
M f = mass of � uid in multiply connected region
Mi = 6 £ 6 vehicle mass matrix, Eq. (9)
M̄i = 6 £ 6 displaced mass matrix, Eq. (14)
Mr = 6 £ 6 added mass matrix, Eq. (1)
m = mass of vehicle
m x , etc. = apparent mass, Eq. (3)
m̄ = mass of displaced � uid
m̄ x , etc. = apparent displaced mass, Eq. (3)
Ne , Ee , De = north, east, and down vehicle position
P = 6 £ 6 matrix of inertial angular velocities,

Eq. (39)
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p, q, r = body axis components of inertial angular
velocity

p f , q f , r f = effective rotation rates, Eq. (59)
pg , qg , rg = body axis components of gust angular velocity
Q = vector of generalized forces
q = vector of problem coordinates, Eq. (24)
R = body angular rates transformationmatrix,

Eq. (31)
T = total kinetic energy
T̄ = Lagrangian in terms of the generalized

coordinates and their velocities
u, v , w = body axis components of inertial velocity
uc, vc , w c = body axis components of steady circulating

velocity relative to multiply connected region
u f , v f , w f = body axis components of the inertial velocity of

the multiply connected region of � uid
ug , vg , wg = body axis components of gust velocity
Çv ¤
c = apparent rate of change including the � ow� eld,

Eq. (61)
W = 6 £ 6 matrix of inertial linear velocities,

Eq. (39)
Wc = 6 £ 6 matrix of circulating velocities, Eq. (40)
W f = 6 £ 6 matrix of � uid velocities,Eq. (40)
Wr = 6 £ 6 matrix of relative velocities,W ¡ W f ¡ Wc

Çw ¤
c = apparent rate of change including the � ow� eld,

Eq. (61)
X, Y, Z = body axis force components
x = inertial linear and angular velocity vector,

(u, v, w , p, q, r)T

xc = circulating velocity vector, (uc , vc, wc , 0, 0, 0)T

x f = vessel or region velocity vector,
(u f , v f , w f , 0, 0, 0)T

xg = gust or combined � uid and circulating velocity
vector, (ug , vg , wg , pg , qg , rg )T

xr = relative velocity vector of the vehicle and � uid,
Eq. (74), (ur , vr , wr , pr , qr , rr )T

x ¤
r = relative velocities including the antisymmetric

terms from the gradient matrix U , Eq. (68)
[®]T = transformationmatrix, Eq. (28)
[¯] = transformationmatrix, Eq. (29)
± = small perturbation
P = vector of generalized forces, Eq. (33)
U = 3 £ 3 velocity gradient matrix, Eq. (21)
! = rate of change of quasi coordinates, Eq. (25)

Subscripts

g = combined � uid and circulating velocities,
Eq. (74)
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X Çu = perfect � uid added masses and inertia, @X / @ Çu, etc.
Ur0 , etc. = steady-state body axis relative velocity

Superscripts

b = referenced to the center of buoyancy
g = referenced to the center of gravity

I. Introduction

T HE calculation of the motion of a rigid vehicle in an unsteady
heavy � uid is an important part of the analysis and design of

many vehicle systems, such as aircraft and submersibles. One of
the many problems in computing such motions is that, in a heavy
� uid, the motion of the vehicle and that of the � uid are coupled by
their respective inertias. To calculate the acceleration of the vehi-
cle we must � rst establish the � uid pressures around it, but these
are in turn dependent not only on the relative velocity between
the � uid and the vehicle, but also on the � uid’s inertial accelera-
tion and, most important, the acceleration of the vehicle, the very
thing we wish to determine. In a perfect � uid no forces are re-
quired to maintain steady translationof a vehicle, but if the vehicle
is accelerated, then additional forces are needed over and above
those needed to accelerate the vehicle in vacuo. These arise as a
result of the work done to increase the kinetic energy contained
in the � uid when the vehicle is translating at the new speed. In
fact, these effects appear as an apparent increase in the mass of the
vehicle and are often referred to as added mass. They do not repre-
sent � uid mass carried along with the vehicle, but instead represent
the additional energy that has to be transferred to the � uid during
acceleration.

The basis for analyzing the motion of a rigid vehicle in a perfect
� uid was establishedin the 19th century and is describedby Lamb.1

In this approach, the troublesome calculation of the effects of the
� uid pressures on the surface of the solid is avoided by treating the
solid and � uid as one dynamical system. Lamb initially considers
the case of a single solid moving through an in� nite mass of liquid
and where the motion of the � uid is entirely due to that of the solid.
As such, the motion is irrotational and acyclic. When Lamb con-
siders the impulsive wrench (i.e., the combined force and moment)
required to be applied to the solid to generate the motion instanta-
neously from rest, he shows that it varies in exactly the same way as
the momentum of a � nite dynamical system, even though the total
momentum of the vehicle and � uid is indeterminate.

As part of the analysis Lamb shows that the kinetic energy of
the � uid can be expressed as a quadratic form involving the three
translational and three rotational velocities of the vehicle. By the
use of the modern derivative type notation of naval architecture, the
total kinetic energy would be written as

T =
1

2
[u v w p q r ]

¡ X Çu ¡ X Çv ¡ X Çw ¡ X Çp ¡ X Çq ¡ X Çr

¡ Y Çu ¡ Y Çv ¡ Y Çw ¡ Y Çp ¡ Y Çq ¡ Y Çr

¡ Z Çu ¡ Z Çv ¡ Z Çw ¡ Z Çp ¡ Z Çq ¡ Z Çr

¡ L Çu ¡ L Çv ¡ L Çw ¡ L Çp ¡ L Çq ¡ L Çr

¡ M Çu ¡ M Çv ¡ M Çw ¡ M Çp ¡ M Çq ¡ M Çr

¡ N Çu ¡ N Çv ¡ N Çw ¡ N Çp ¡ N Çq ¡ N Çr

u

v

w

p

q

r

=
1

2
xT Mr x (1)

M =

m x 0 0 ¡ X Çp azm ¡ X Çq ¡ aym ¡ X Çr

0 m y 0 ¡ azm ¡ Y Çp ¡ Y Çq ax m ¡ Y Çr

0 0 m z aym ¡ Z Çp ax m ¡ Z Çq ¡ Z Çr

¡ L Çu ¡ azm ¡ L Çv aym ¡ L Çw Jx x ¡ Jx y ¡ Jzx

azm ¡ M Çu ¡ M Çv ¡ ax m ¡ M Çw ¡ Jx y Jyy ¡ Jyz

¡ aym ¡ N Çu ax m ¡ N Çv ¡ N Çw ¡ Jzx ¡ Jyz Jzz

(4)

The 6 £ 6 matrix is symmetric and, hence, contains 21 unique co-
ef� cients. It is usually referred to as the added mass matrix. Lamb
uses this, along with Kirchhoff’s version of Lagrange’s equations
of motion, to give the equations of motion of a rigid vehicle in an
in� nite stationary irrotationalmedium.

The derivations given by Lamb (the � rst edition was published
in 1879) were used as the basis of the equations of motion of air-
ships, for example, those of Jones and Williams,2 and culminated
in the Williams and Collar3 report on the loss of the R101. This
latter report was almost certainly the � rst practical, fully nonlin-
ear solution of a multistate � ight dynamics problem. A form of the
equations of motion suitable for the dynamics of underwater vehi-
cles is givenby Lewis et al.4 These equationswere used successfully
by Lewis5 to simulate the motion, in a steady sea, of the SEAPUP
remotely operated underwater vehicle. They have also been used
to model the motion of airships in a steady uniform atmosphere by
Cook et al.6 and were successfullyapplied to simulate the motion of
the YEZ-2A airship by Nippress and Gomes.7 Recently, however,
the author has had some dif� culty in applying these equations to the
motion of other vehicles in steady or turbulent winds. In principle,
the equations should be applicable to not only underwater vehicles
and airships, but also to parafoils and airplanes. Two major prob-
lems of the equations in Lewis et al.4 are that they do not reduce to
the small perturbation equations that are used for aircraft in gusts
(see Refs. 8 and 9).

II. Dif� culties
The equations given by Lewis et al.4 are of the form

M Çx = F + Fd + F f + A (2)

where A is the vector of the � uid dynamics forces and moments due
to relative velocity.

From Ref. 4, we de� ne effective or apparent masses and inertias
as (the bar refers to the displaced � uid)

m x = m ¡ X Çu m̄ x = m̄ ¡ X Çu

m y = m ¡ Y Çv m̄ y = m̄ ¡ Y Çv

mz = m ¡ Z Çw m̄ z = m̄ ¡ Z Çw

Jx = Ix ¡ L Çp Jyz = Iyz + M Çr = Izy + N Çq

Jy = Iy ¡ M Çq Jzx = Izx + N Çp = Ix z + L Çr

Jz = Iz ¡ N Çr Jx y = Ixy + L Çq = Iyx + M Çp (3)

If the vehicle center of mass has body axis coordinates of (ax ,
ay , az), then the mass matrix is
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the dynamics vector is given by

Fd =

¡ m zwq + m yrv + m ax (q2 + r 2) ¡ ay pq ¡ azr p

¡ m x ur + m z pw + m ¡ ax pq + ay ( p2 + r 2) ¡ azrq

¡ m yvp + m x qu + m ¡ ax rp ¡ ayrq + az(q2 + p2)

¡ ( Jz ¡ Jy)rq + Jyz(q2 ¡ r 2) + Jzx pq ¡ Jxy pr + m[ ¡ ay (vp ¡ qu) + az(ur ¡ pw)]

¡ (Jx ¡ Jz) pr ¡ Jyz pq + Jzx (r 2 ¡ p2) + Jx yqr + m[ax (vp ¡ qu) ¡ az(wq ¡ rv)]

¡ (Jy ¡ Jx )qp + Jyz pr ¡ Jzx qr + Jx y ( p2 ¡ q2) + m[ ¡ ax (ur ¡ pw ) + ay(wq ¡ rv)]

(5)

and if the coordinates of the center of buoyancy are (bx , by , bz), then the � uid motion vector is

F f =

m̄ x Çu f + m̄zw f q ¡ m̄ yrv f

m̄ y Çv f + m̄ x u f r ¡ m̄ z pw f

m̄ z Çw f + m̄ y v f p ¡ m̄ x qu f

¡ L Çu Çu f ¡ (bzm̄ + L Çv ) Çv f + (bym̄ ¡ L Çw ) Çw f + m̄[by(v f p ¡ qu f ) ¡ bz(u f r ¡ pw f )]
(bzm̄ + M Çv ) Çu f ¡ M Çv Çv f ¡ (bx m̄ ¡ M Çw ) Çw f + m̄[ ¡ bx (v f p ¡ qu f ) + bz(w f q ¡ rv f )]
¡ (bym̄ + N Çu ) Çu f + (bx m̄ ¡ N Çv ) Çv f ¡ M Çw Çw f + m̄[bx (u f r ¡ pw f ) ¡ by (w f q ¡ rv f )]

(6)

Several dif� culties arise with the preceding equations. The most
obvious is that if the � uid is unsteady, then the � uid motion vector
Ff is a function of the � uid inertial velocity as well as its inertial
acceleration, and this is counterintuitive. This can be clearly seen
by giving the body the mass and inertia properties of the � uid that
it displaces. In that case the relative acceleration between the body
and the � uid should be zero, but the preceding equations do not
reduce to this. A less obvious dif� culty arises with the mass ma-
trix M if we attempt to apply the equations to a vehicle such as a
partially constraineddynamic wind-tunnelmodel. Then it would be
expected that the forces and moments due to the vehicle’s inertia
would depend on its inertial acceleration whereas the forces and
moments due to the � uid acceleration (the added mass and inertia
terms) would dependon the relative accelerationof the � uid and the
vehicle. Thus, we might rearrange the equations in the form

Mi Çx + Mr Çxr = ¡ Mr Çx f + Fd + F f + A + F (7)

where Mr is given by Eq. (1),

xr = x ¡ x f (8)

are the relative velocities of vehicle and � uid, and the vehicle mass
matrix is

Mi =

m 0 0 0 maz ¡ may

0 m 0 ¡ maz 0 max

0 0 m may ¡ max 0

0 ¡ maz may Ix x ¡ Ix y ¡ Ix z

maz 0 ¡ max ¡ Ix y Iyy ¡ Iyz

¡ may max 0 ¡ Ix z ¡ Iyz Izz

(9)

The � uid motion and � uid acceleration vectors in Eq. (7) can be
combinedintoa new � uid motionvector.This results in most, butnot
all, of the acceleration terms canceling, and the � uid motion vector
still remains a function of the inertial � uid velocity. The source of
this is partly because in the derivation used in Lewis et al.4 some,
but not all, perfect � uid relative velocity terms have been absorbed
into the vector A. As a result, a full set of equations involving all of
the perfect � uid terms is required prior to any rearrangement such
as that just given.

The equations of motion used for airplanes were � rst set out by
Bryan.10 He used Euler’s version of Newton’s equations of motion
and expressed the � uid forces and moments as linear functions of
the perturbationsof the translationand rotational relative velocities
from a steady state. In 1921, Cowley and Glauert11 noted that a
downwash derivative M Çw was required to explain the anomalous

values observed for the Mq derivative in airplanes. This derivative
was due to the convectionpast the tailplane of the vortex sheet shed
by the wing during unsteady motion. Subsequently, workers who
were interested in � utter investigated the unsteady aerodynamics
of wings (see the review by Lyon12 ) and were able to show that
for most � ight dynamics situations the unsteady lift effects of the
wing could be approximated by an added mass plus a frequency-
dependent term. The frequency-dependent term was constant for
small values of the reduced frequency typical of airplane dynamics.
For most airplanes, these terms are small and are usually ignored.
As a result, it is now standard to augment Bryan’s model10 with Z Çw

and M Çw derivatives, whose main component is due to the tailplane
� ying in the lagged downwash � eld of the main wing.

A major addition to Bryan’s equations10 was the inclusion of
atmospheric winds and gusts. This was � rst detailed by Wilson13

and details of more modern extensions are given by Etkin14 and
Mulder and van der Vaart.9 The basis of these descriptions is the
assumption that the forces and moments due to gusts arise solely as
a result of the relative motion of the vehicle and the � uid. Treating
the airplane as a point, the relative � uid velocity can be represented
by the differencebetween the vehicle inertialvelocityand the � uid’s
inertial velocity,

xr =[ ur vr wr pr qr rr ]T =x ¡ xg

= [ u v w p q r ]T ¡ [ug vg wg pg qg rg]T

(10)

The p, q , and r terms were included in the gust velocitiesby Wilson
“so as to take into account any possible rotational motion in the
gusts.”13 As a result the gust contributionto the forces and moments
is represented by

d X

d Y

d Z

d L

d M

d N

=

Xu Xv Xw X p Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Z p Zq Zr

Lu L v Lw L p Lq Lr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw N p Nq Nr

d ur

d vr

d wr

d pr

d qr

d rr

= Ae±xr = Aex ¡ Aexg (11)

A further complication is to recognize the presence of the accel-
eration derivatives and include in the gust forces and moments
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additional terms due to the � uid’s inertial acceleration.Such terms
might be similar to

Mr Çxg (12)
but should other terms be included as well?

Later authors such as Stengel,8 Etkin15 and Mulder and van der
Vaart9 have gone further and have included the gust penetration
effects by representing that the vehicle is, in general, traversing a
velocity � eld containinggradients.This is taken as being equivalent
to the vehicle having an apparent rate of rotation. Such apparent
rotation rates are then applied to the vehicle aerodynamic model
given earlier. A question that then arises is, should the apparent
rotationrates be used in the � uid accelerationterms suchasEq. (12)?

The remaining modern extension has been to replace the linear
small perturbation model of the aerodynamic forces and moments
with full force models, often based on empirical results from wind
tunnels, etc. These typically assume that the forces and moments
can be written in terms of the relative linear and angular velocities.
With such a formulation the question again arises, how should the
apparent rates of rotation be used in such a model? Just adding
in terms into the equations may not be correct. Additionally, the
apparent rotation rates due to the velocity gradients can be due to
both irrotational and rotational motion of the � uid, and the method
makes no distinction.Finally, the equationsof motion contain terms
that are the product of the rotation rates and the velocities, and it is
not clear whether or not these effective rotation rates should appear
at these points in the equations.

In summary, the equations of motion of lifting and buoyantvehi-
cles have developedalong similar but different lines ever since their
� rst introduction. They are clearly closely related, but the equa-
tions used for airships and underwater vehicles do not reduce to
those normally used for airplanes. Both sets of equations were
originally derived in a systematic way, but subsequent enhance-
ments have been performed in a rather piecemeal way. The dif� -
culties this has produced have lead to confusion, such as that in the
Pretty and Hookway16 Note questioningairship equations, or com-
plex dif� culties as shown in the correspondencebetween Etkin and
D’Eleuterio17 and Jones and DeLaurier.18

There have also been dif� culties when applying the equations to
nonconventional situations. Recently, for example, the author has
been involvedwith the dynamics of parafoils.These are liftingvehi-
clesof low density,but they have substantialaddedmass, and it is not
clear how to set up theirequationsofmotion forunsteadyconditions.

As a result of the precedingdif� culties, this paper aims to provide
a common set of equations for both buoyant and lifting vehicles in
an unsteady� uid and to suggesta more rationalmeans for including
empirical data into the equations.

III. Alternative Derivation
As mentioned earlier, Lamb1 addressed the problem of a vehicle

moving in an in� nite � uid and was able to show that the impul-
sive wrench need to start the motion from rest varied in the same
way as the momentum of a � nite system. He extended the result to
the problem of a perforated vehicle moving in � uid contained in a
large vessel, which may also be perforated. In that case the � uid
is multiply connected, and cyclic motions through the perforations
are allowable, independent of the motion of the vehicle. Such cir-
culating motions can provide velocity gradients in the � ow. Taking
the arguments further, we can apply impulsive forces to the vessel
so as to give it, and its � uid contents, a prescribed velocity and ac-
celeration.As a result, the � uid inside the vessel will have velocity
gradients plus a bulk velocity and a hydrostatic pressure gradient
due to the vessel’s acceleration.

The totalenergyis obtainedbyapplyinganapproximationusedby
both Lamb1 and Taylor,19 and the equationsof motion of a rigid ve-
hicle in a nonuniform� oware derivedviaLagrange’s equations.The
perfect � uid forces and moments in the resultingequationsare iden-
ti� ed andseparatedinto inertialand relativevelocityeffects.Finally,
gust penetrationeffectsare related to the velocitygradientsto repre-
sent thevariationoverthevehicleof theundisturbedmoving� uidve-
locities.These are combinedwith the perfect � uid terms and the vis-
cousforcesandmoments that are functionsof relativevelocityalone.

Fig. 1 Vehicle located ina largeaccelerating vessel containingcurrents
and velocity gradients.

A. Perfect Fluid Equations

Considera rigidvehiclemovingin a perfect� uid that is circulating
in a multiply connected vessel, with the vessel itself accelerating.
We shall consider a set of axes � xed in the vehicle’s body, plus
a nonaccelerating set of Earth axes (see Fig. 1). We invoke the
approximationused by both Lamb1 and Taylor19 that if the vehicle’s
velocity is made equal to the velocity of the � uid, and its mass is
made equal to that of the displaced� uid, then the energy is the same
as it would be if the vehicle were absent and the space occupied
by � uid. This implies that changes in the circulating � uid velocities
over the length of the vehicle are small compared to the velocity of
the stream in its neighborhood.

We also de� ne the followingquantitiesevaluated in vehicle body
axes:

x = (u, v , w , p, q , r)T

which represents the vehicle’s velocity relative to the Earth axes,

x f = (u f , v f , w f , 0, 0, 0)T

the vessel’s velocity relative to the Earth axes, and

xc = (uc , vc , wc , 0, 0, 0)

the steady circulatingvelocity relative to the vessel that would exist
if the vehicle were absent.

We also have, therefore, in Earth axes,

x f = ( ÇN f , ÇE f , ÇD f , 0, 0, 0)

and we de� ne the relative velocity as

xr = x ¡ x f ¡ xc (13)

This way of modeling the motion of the � uid is to some extent
overdetermined,and we are free to make choices as to how exactly
x f and xc are chosen. For example, if we are considering motion in
a steady current with no gradients,we can set xc =0. Alternatively,
if we are considering no current but with gradients, then we can set
x f = ¡ xc .

We alsode� ne themassmatrixof the � uiddisplacedby thevehicle
(strictly speaking, replaced by the vehicle),

M̄i =

m̄ 0 0 0 m̄bz ¡ m̄by

0 m̄ 0 ¡ m̄bz 0 m̄bx

0 0 m̄ m̄by ¡ m̄bx 0

0 ¡ m̄bz m̄by 0 0 0

m̄bz 0 ¡ m̄bx 0 0 0

¡ m̄by m̄bx 0 0 0 0

(14)

The moments and productsof inertia in this matrix are zero because
the matrix represents the kinetic energy of the � uid that is replaced
by the vehicle, and, being irrotational, the � uid has zero rotational
energy.

We can then write the Lagrangian of the system, including the
bulk translation of the multiply connected � uid, by building up a
description of the total kinetic energy via the following steps:

1) Following Lamb (§ 139), we consider the case where the � uid
has cyclic irrotational motion through channels in the enclosing
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a) c)

b) d)

Fig. 2 Stages in developing the Lagrangian.

vessel and assume that it is independentof the motion of the vehicle
itself (see Fig. 2a). As shown by Lamb, such cyclic irrotational
motion canbe impulsivelygeneratedfromrestvia suitablepressures
distributedacross imaginarydiaphragmsplacedacross thechannels,
so as to render the space singly connected. We shall denote the
associated kinetic energy by K0.

2) Impose an impulsive force on the vessel so as to accelerate it
to x f ; in this case the additionalkinetic energy is M f xT

f x f / 2, where
M f is the mass of � uid contained in the vessel (see Fig. 2b).

3) Take the � uid mass that occupies the space that will ultimately
be occupied by the vehicle and accelerate it, via a set of impulsive
pressures over its surface, to the same speed as the vehicle (see
Fig. 2c). In that case, the kinetic energy will increase on two counts,
� rst the increase in kinetic energy of the � uid mass that will be
ultimately replaced by the vehicle and second the increase in ki-
netic energy of the surrounding � uid due to the increased velocity.
The latter, of course, can be representedin terms of the added mass.
Thus, the extra energy is xbT

r (Mb
r + M̄b

i )xb
r / 2 where the superscripts

b refer to values taken about the center of buoyancy of the object,
that is, the center of gravity of the displaced � uid.

4) Finally, we remove the � uid from the space that is to be occu-
pied by the vehicle; this reduces the kinetic energy by xbT

M̄b
i xb / 2

and replacesit with the actual vehicle (see Fig. 2d), thereby increas-
ing the energy by =xgT

Mg
i xg / 2, where the superscript g refers to

the center of gravity of the vehicle.
In equation form, the total kinetic energy associated with the

foregoing process is given by

2T = 2K0 + M f xT
f x f + xbT

r Mb
r + M̄b

i xb
r + xgT

Mg
i xg ¡ xbT

M̄b
i xb

(15)

The fundamental approximation in Eq. (15) is that xbT

r (Mb
r +

M̄b
i )xb

r / 2 represents the kinetic energy of the � uid replaced by the
vehicle. If the circulating� uid has no velocitygradientsin the vicin-
ity of the vehicle, then the expression is exact. If velocity gradients
are present, then the expression will be approximately correct so
long as ( D v / V )2 ¿ 1, where D v is the change in circulating � uid
velocity over the length of the vehicle and V is the local velocity of
the stream. We shall also see later that neither K0, the energy of the
circulating � uid, nor M f , the mass of circulating � uid, enter into
the � nal form of the equations.

We can relate the velocityvectorof the vehicle’s center of gravity
and center of buoyancyto the velocityvector of the body axis origin
by

xg =
I A

0 I
x xb =

I B

0 I
x (16)

T̄q =
@T̄

@Ne

@T̄

@Ee

@T̄

@De

@T̄

@u

@T̄

@h

@T̄

@w

@T̄

@N f

@T̄

@E f

@T̄

@D f

@T̄

@Nc

@T̄

@Ec

@T̄

@Dc

T

(27)

where

A =

0 az ¡ ay

¡ az 0 ax

ay ¡ ax 0

B =

0 bz ¡ by

¡ bz 0 bx

by ¡ bx 0

(17)

The elements of the added mass matrix change with any change in
the position of the axis origin. When we consider the kinetic energy
of the � uid as constant, it can be shown that the added mass matrix
for an arbitrary axis origin is given by

Mr =
I 0

¡ B I
Mb

r

I B

0 I
(18)

Failure to bear this in mind can lead to serious errors, as will be
shown in Sec. III.B.

Now the relative velocity between the � uid and the vehicle at the
vehicle’s center of buoyancy is given by

xb
r = xb ¡ x f ¡ xb

c (19)

Because of the velocity gradients in the circulating � uid, the cir-
culating velocity that would exist at the center of buoyancy if the
vehicle were absent is different from that which would exist at the
body axis origin. As a result, we can write

xb
c = xc +

U T

0
b (20)

and

U =

@uc

@x

@vc

@x

@wc

@x

@uc

@y

@vc

@y

@wc

@y

@uc

@z
@vc

@z
@wc

@z

(21)

Because the � ow is irrotational the preceding matrix is symmetric.
Substituting Eqs. (16) and (20) into Eq. (19) gives

xb
r =

I B

0 I
xr ¡

U T

0
b (22)

The Lagrangian can now be written as

2T = 2K0 + M f xT
f x f + xr ¡

U T

0
b

T

(Mr + M̄i )

£ xr ¡
U T

0
b + xT (Mi ¡ M̄i )x (23)

where all of the items are referred to the body axis origin.
The vehicleequationsofmotionwith theextra terms for the � uid’s

motion can be derived using Lagrange’s equations. However, the
preceding Lagrangian is not given in terms of generalized coordi-
nates and their corresponding velocities, and so the conventional
form of Lagrange’s equations cannot be used.

This problem belongs to a class that can be solved by the use of
quasi coordinates,and this generalclass of problems is describedby
Whittaker20 and Meirovitch.21 The true coordinates of the current
problem can be taken as

q = (Ne, Ee , De , u , h , w , N f , E f , D f , Nc , Ec, Dc) (24)

whereas the rates of change of the correspondingquasi coordinates
are

! = (u, v , w , p, q , r, u f , v f , w f , uc, vc , wc) (25)

Lagrange’s equations in matrix form are
ÇT̄ Çq ¡ T̄q = Q (26)

where
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and the Lagrangian T̄ = T̄ ( Çq q) is expressed in terms of the gen-
eralized coordinates and their velocities, and Q represents the gen-
eralized forces. To convert this to quasi coordinate � rst express the
rates of change of the quasi coordinates as linear combinations of
the rates of change of the true coordinates,

! = [ a ]T Çq (28)

Then the inverse relation is

Çq = [ b ]! (29)

For the present problem we have

u

v

w

=

cos h cos w cos h sin w ¡ sin h

sin u sin h cos w ¡ cos u sin w sin u sin h sin w + cos u cos w sin u cos h

cos u sin h cos w + sin u sin w cos u sin h sin w ¡ sin u cos w cos u cos h

ÇNe

ÇEe

ÇDe

(30)

p

q

r

=

1 0 sin h

0 cos u sin u cos h

0 ¡ sin u cos u cos h

Çu
Çh
Çw

(31)

plus equations similar to Eq. (30) for [uc vc wc]T and
[u f v f w f ]T .

The preceding equations de� ne the [a ] matrix:

[ a ]T =

E 0 0 0

0 R 0 0

0 0 E 0
0 0 0 E

(32)

and the 3 £ 3 matrices E and R are those of Eqs. (30) and (31),
respectively.

Premultiply Lagrange’s equation by [ b ]T to give

[ b ]T [ ÇT̄ Çq ¡ T̄q ] = [ b ]T Q = P (33)

and we can write

T̄ Çq = !
@

@ Çq

T

T x = [ a ]T T x (34)

where T = T(!, q) is the Lagrangian expressed solely in terms of
the generalized co-ordinates and the quasi-coordinate velocities.
Therefore,

[b ]T [[a ] ÇT x + [ Ça ]T x ¡ ÇTq ] = P (35)

but

T̄q = Tq + !
@

@q

T

T x (36)

and writing

[ b ]T Tq = T p (37)

gives

ÇT x + [ b ]T [ Ça ] ¡ x
@

@q
T x ¡ T p = P (38)

After considerablealgebraicmanipulationand the choice of follow-
ing matrices

P =

0 ¡ r q 0 0 0

r 0 ¡ p 0 0 0

¡ q p 0 0 0 0

0 0 0 0 ¡ r q

0 0 0 r 0 ¡ p

0 0 0 ¡ q p 0

W =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 ¡ w v 0 0 0

w 0 ¡ u 0 0 0

¡ v u 0 0 0 0

(39)

Wr , W f , and Wc , are similar, but using xr , x f , and xc the foregoing expressions yield the Lagrangian equations of motion,

ÇTx + (P + W)Tx + W f T f + WcTc ¡ Ts = F (40)

where,

T f =
@T

@u f

@T

@v f

@T

@w f
0 0 0

T

Tc =
@T

@uc

@T

@vc

@T

@w c
0 0 0

T

(41)

Tx =
@T

@u
@T

@v
@T

@w
@T

@p
@T

@q
@T

@r

T

Ts =
@T

@x

@T

@y

@T

@z

@T

@n

@T

@g

@T

@f

T

(42)

and x, y, z, n , g , and f are linear displacementsand angular de� ec-
tions about the body axes.

The equations of motion (40) can be written as

ÇTx = F ¡ (P + W)Tx ¡ W f T f ¡ WcTc ¡ Ts (43)

These equations are similar to Lamb’s, but with � uid motion and
velocity gradient terms included. They consist of six equations, al-
though the problem has 12 degrees of freedom. The remaining six
equations are the equations of motion of the multiply connected re-
gion. For the present problem, the motion of the region is regarded
as prescribed and, hence, the equations are not required.

Differentiating the Lagrangian (20) and remembering that
xr =x ¡ x f ¡ xc gives

Tx = (Mr + M̄i ) x ¡ x f ¡ xc ¡
U T

0
b + (Mi ¡ M̄i )x

ÇTx = (Mr + M̄i )( Çx ¡ Çx f ) + (Mi ¡ M̄i ) Çx = (Mr + Mi ) Çx

¡ (Mr + M̄i ) Çx f

T f = M f x f ¡
I 0

0 0
(Mr + M̄i ) x ¡ x f ¡ xc ¡

U T

0
b

Tc = ¡
I 0

0 0
(Mr + M̄i ) x ¡ x f ¡ xc ¡

U T

0
b (44)

Substituting in Eq. (43) gives

(Mr + Mi ) Çx ¡ (Mr + M̄i ) Çx f

= F ¡ (P + W)(Mr + M̄i ) xr ¡
U T

0
b ¡ (P + W)

£ (Mi + M̄i )x + W f (Mr + M̄i ) xr ¡
U T

0
b

+ Wc(Mr + M̄i ) xr ¡
U T

0
b + Ts (45)
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or writing Wr = W ¡ W f̄ ¡ Wc gives the equations of motion as

(Mr + Mi ) Çx = F ¡ (P + W)(Mi ¡ M̄i )x + (Mr + M̄i ) Çx f

¡ (P + Wr )(Mr + M̄i ) xr ¡
U T

0
b + Ts (46)

The remaining term to be considered is Ts : This is the change in
energy resulting from quasi-coordinate displacements, that is, dis-
placements along and around the body axes. The corresponding
forces and moments arise from the velocity gradients in the circu-
lating � uid. The only componentof the Lagrangian that contributes
is

xr ¡
U T

0
b

T

(Mr + M̄i ) xr ¡
U T

0
b (47)

and we have from Eq. (22)

xr ¡
U T

0
b =

I ¡ B

0 I
xb

r (48)

As a result, expression (47) can be written as

xbT

r

I 0

B I
(Mr + M̄i )

I ¡ B

0 I
xb

r (49)

or

xb ¡ x f ¡ xb
c

T I 0

B I
(Mr + M̄i )

I ¡ B

0 I
xb ¡ x f ¡ xb

c (50)

DifferentiatingEq. (50) with respect to the quasi coordinates gives

Ts = ¡
U 0

¡ BU 0
(Mr + M̄i ) xr ¡

U T

0
b (51)

As a result, the � nal form of the equations of motion becomes

(Mr + Mi ) Çx = F ¡ (P + W)(Mi ¡ M̄i )x + (Mr + M̄i ) Çx f

¡ (P + Wr )(Mr + M̄i ) xr ¡
U T

0
b

¡
U 0

¡ BU 0
(Mr + M̄i ) xr ¡

U T

0
b (52)

It is instructive to examine these equations. The � uid motion
terms (Mr + M̄i ) Çx f depend only on the � uid’s inertial acceleration
and do not depend on the � uid’s inertial velocity, thus solving one
of the problems outlined in Sec. II. In addition, both the added
mass of the vehicle and the mass of displaced � uid are involved
in the expression. The mass matrix is the conventional (Mr + Mi ),
and the dynamics vector ¡ (P + W)(Mi ¡ M̄i )x (that is, terms due
to rotating body axes) involves the differencebetween the vehicle’s
mass and that of the displaced� uid. Unlike the case of the equations
in Sec. II, giving the vehicle the same mass and inertias as the
displaced� uid results in the relative accelerationbecoming zero, as
would be expected.

The � nal two terms in Eq. (52) are the perfect � uid forces and
moments that are a function of the relative velocity and the velocity
gradients alone. They can be combined and expressed in terms of
the relative velocities at the center of buoyancy to give

¡
I 0

¡ B I
P + Wb

r +
U 0

0 0
Mb

r + m̄
I 0

0 0
xb

r

(53)

where the superscriptb implies quantitiesevaluated at the center of
buoyancy.

Equation (53) represents a set of forces and moments that act at
the center of buoyancy and that are transformed to the origin by

the left-hand matrix. If the matrices in the preceding expressionare
partitioned into 3 £ 3 sub matrices (written in nonbold type) then
the equations of motion become

(Mr + Mi ) Çx = F ¡ (P + W)(Mi ¡ M̄i )x + (Mr + M̄i ) Çx f

¡
I 0

¡ B I
(P + U ) m̄ I + Mb

11 (P + U )Mb
12

W b
r M b

11 + P Mb
12 W b

r Mb
12 + P Mb

22

xb
r

(54)

If the mass of displaced� uid is negligibleand the gradientsare zero,
Eq. (52) reverts to the conventional airplane equations of motion:

M Çx = F ¡ (P + W)Mx (55)

B. Gust Penetration Effects

The terms involving U representthe perfect � uid effects of veloc-
ity gradients. With the axes at the center of buoyancy, the moments
due to the gradients are zero and the forces are

U

ur (m̄ ¡ X Çu ) ¡ vr X Çv ¡ wr X Çw ¡ pL Çu ¡ q M Çu ¡ r N Çu

¡ ur Y Çu + vr (m̄ ¡ Y Çv ) ¡ wr Y Çw ¡ pL Çv ¡ q M Çv ¡ r N Çv

¡ ur Z Çu ¡ vr Z Çv + wr (m̄ ¡ Z Çw ) ¡ pL Çw ¡ q M Çw ¡ r N Çw

(56)

If we consider a stationary axisymmetric vehicle with no rotation,
the x force component becomes

X = ur (m̄ ¡ X Çu )
@u

@x
¡ X Çv

@v

@x
¡ X Çw

@w

@x
(57)

which is the same result as that obtained by Lamb1 and Taylor.19

If the vehicle is moving in a steady but nonuniformstream, there
will be time-varying relative velocity components due to the vehi-
cle’s translationthrough the � uid gradients.The perfect � uid effects
of these gradients are already included in the equations as shown
earlier, but in many situations such as wind shear and turbulence
the velocity � eld will not be irrotational. In this case the matrix of
gradients U can be split22 into symmetric and antisymmetric parts,
with the symmetric representing the irrotational strain rates [used
in Eqs. (52) or (54)] and the antisymmetric representing vorticity.
The effects of such vortical gradients is not included in the preced-
ing equations. A clue as to how to handle the vortical components
is given by observing that the upper-left submatrix of P is anti-
symmetric in p, q, and r and that it combines linearly with U in
Eq. (54). This suggests that any skew symmetric part of U can be
treated as similar to P. In effect, such vortical velocitygradients can
be treated as effective rotation rates because they produce velocity
distributions similar to those due to rotation,

[p f q f r f ]T =
@w c

@y
¡

@vc

@z
@uc

@z
¡

@w c

@x
@vc

@x
¡

@uc

@y

T

= ( U ¡ U T ) (58)

These effective rotation rates can be carefullyapplied to the vehi-
cle’s rotaryderivatives.Caremust be taken,however,becausenot all
of the gradientshave the same in� uence. In an airplane,for example,
the vertical dimensions are small compared to the tail arm and the
span, and so the rotary derivatives are due mainly to lift associated
with changes in the incidenceof the tailplaneand the wing tips, that
is, the result of x and y gradients. As a result, the variation with z
should be ignored, so that

[p f q f r f ]T =
@w c

@y
, ¡

@w c

@x
,

@vc

@x
¡

@uc

@y

T

(59)

This is the linear � eld approximation used by Etkin.15
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If the vehicle has a velocity U (along the x axis) relative to the
� uid,

[p f q f r f ]T =
@wc

@y
, ¡

Çw ¤
c

U
,

Çv ¤
c

U
¡

@uc

@y

T

(60)

where the starred terms are the apparent rate of change due to the
motion of the turbulence� eld past the vehicle,not the inertialaccel-
erationsof the undisturbed� uid. The precedingexpressionis added
to the vehicle rotation rates to give the effective relative angular
velocity for use in the aerodynamic calculations (it being solely a
function of the relative velocities). This avoids one of the problems
mentioned earlier with the formulation used in Ref. 4, which had
� uid velocity terms in the � uid motion vector and, which made it
unclear as to how such effective rotation rates could be included in
the equations.As mentionedearlier,Eqs. (52) and (54) have no such
terms in the � uid motion vector.

¡ P + Wb
r Mb

r + m̄
I 0

0 0
xb

r

=

¡ rY Çu + q Z Çu ¡ r(Y Çv ¡ m̄) + q Z Çv ¡ rY Çw + q(Z Çw ¡ m̄)

r(X Çu ¡ m̄) ¡ pZ Çu r X Çv ¡ pZ Çv r X Çw ¡ p(Z Çw ¡ m̄)

¡ q(X Çu ¡ m̄) + pY Çu ¡ q X Çv + p(Y Çv ¡ m̄) ¡ q X Çw + pY Çw

¡ wr Y Çu + vr Z Çu ¡ r M Çu + q N Çu ¡ wr Y Çv + vr Z Çv ¡ r M Çv + q N Çv ¡ wr Y Çw + vr Z Çw ¡ r M Çw + q N Çw

wr X Çu ¡ ur Z Çu + r L Çu ¡ pN Çu wr X Çv ¡ ur Z Çv + r L Çv ¡ pN Çv wr X Çw ¡ ur Z Çw + r L Çw ¡ pN Çw

¡ vr X Çu + ur Y Çu ¡ q L Çu + pM Çu ¡ vr X Çv + ur Y Çv ¡ q L Çv + pM Çv ¡ vr X Çw + ur Y Çw ¡ q L Çw + pM Çw

¡ rY Çp + q Z Çp ¡ rY Çq + q Z Çq ¡ rY Çr + q Z Çr

r X Çp ¡ pZ Çp r X Çq ¡ pZ Çq r X Çr ¡ pZ Çr

¡ q X Çp + pY Çp ¡ q X Çq + pY Çq ¡ q X Çr + pY Çr

¡ wr Y Çp + vr Z Çp ¡ r M Çp + q N Çp ¡ wr Y Çq + vr Z Çq ¡ r M Çq + q N Çq ¡ wr Y Çr + vr Z Çr ¡ r M Çr + q N Çr

wr X Çp ¡ ur Z Çp + r L Çp ¡ pN Çp wr X Çq ¡ ur Z Çq + r L Çq ¡ pN Çq wr X Çr ¡ ur Z Çr + r L Çr ¡ pN Çr

¡ vr X Çp + ur Y Çp ¡ q L Çp + pM Çp ¡ vr X Çq + ur Y Çq ¡ qL Çq + pM Çq ¡ vr X Çr + ur Y Çr ¡ qL Çr + pM Çr

xb
r (62)

The distinctionbetween the real and apparent � uid accelerations
is important because, in some derivations,9 the use of the frozen
turbulence approximation leads to them being lumped together so
that

Z Çw f = Z Çw ¡ Zq / lt (61)

In the case of a moving sea or nonfrozenturbulence, this is incorrect
and the precedingtreatmentkeeps them distinct.Thus, the problems
outlined in Sec. II can be avoided.

One important point is that the linear � eld approximation must
break down at some point as the wavelength of the disturbance
reduces.This applies to both the perfect � uid effects and the vortical
effects.The basic approximationused to establishthe kinetic energy
was that if the vehicle velocitywas made equal to the velocityof the
� uid, and its mass was made equal to that of the displaced� uid, then
the energy was the same as that which would have existed had the
vehicle been absent and the space occupied by � uid. This implies
that ( D v / V )2 ¿ 1, where D v is the change in the circulating � uid
velocities over the length of the vehicle and V is the velocity of the
stream. If this is not so, then more extensive models may be needed
at this point depending on the application.

The acceleration-dependent terms or added masses arise from the
work done in acceleratingthe perfect � uid. In a real � uid, additional
acceleration effects such as the increase in vorticity and its convec-
tion past tailplanes, etc., come into play. It is assumed that all such
effects are added into the corresponding perfect � uid added mass
terms. This is a reasonableassumption for streamlinedvehiclessup-
ported by buoyancy, but is less exact for vehicles with substantial
lift such as airplanes.The unsteadyaspectsof lift generationand the

nature of the Ça derivativesare discussed by Etkin14 and Hancock,23

and whereas the preceding assumption is not strictly correct, it is
still a necessary working approximation for many situations.

C. Use of External Fluid Dynamic Data

The last term in Eq. (54) is a function of the relative velocities
only and could, therefore, be absorbed into the vector F (external
forces and moments) as the perfect � uid components due to the
relative velocity between the � uid and the vehicle. In many cases
the elements of the vector will be derived empirically from wind-
tunnel or tank facilities and will include some or all of the perfect
� uid effects. In addition,parts of F may be determinedby analytical
and computational models of the relative velocity effects. These in
turn may containperfect � uid components.The nongradientperfect
� uid relative velocity terms that could be absorbed into the � uid
dynamic vector are (the b superscripthas been dropped in the large
matrix)

Dependent on how the elements of the F vector are determined,
some or all of the precedingterms may alreadybe included,and care
must be exercised that terms are neither omitted nor accounted for
twice. The risk of double accountingcan be seen by consideringan
axisymmetricvehicle in a turn with w = p =q =0. Then the perfect
� uid yawing moment is, from Eq. (62),

N = ¡ vr X Çuur + ur Y Çv vr (63)

Now, if the vehicle is sideslipping at an angle b ,

sin b = vr / Vtot cos b = ur / Vtot

Hence,

N = V 2
tot 2 (Y Çv ¡ X Çu ) sin 2b (64)

that is, this is the classic perfect � uid moment given by Munk,24 and
depending on the source of the data this may already be included
in the vector F. This danger was noted by Lingard,25 who derived a
set of equations for the longitudinalmotion of a parafoil and rightly
noted that previous investigators had erroneously left terms like
Eq. (63) in the equations of motion, while at the same time using
wind-tunnel data for the pitching moment, thereby double account-
ing. Lingard removed the terms from his equations,but without cor-
recting the rest of the added mass matrix for axes not at the centerof
buoyancy (as described earlier in Sec. III.A). As a result, Lingard’s
equations predict a motion that is dependent on the chosen axis
position, which is clearly a physically incorrect result. Replacing
Lingard’s equations with those just derived removes this problem.
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In the same side-slipping case there is also a side force from
Eq. (62),

Y = urr(X Çu ¡ m̄) ¡ vrr X Çv (65)

and any empirical data used to calculate the side force, such as
whirling arm results, may or may not have been adjusted for this
centrifugal term.

As can be seen from the preceding examples, the absorption of
the perfect � uid terms into F has to be performedwith considerable
care, and the details will vary depending on the application and the
nature of the data used for the F vector. The choice is not arbitrary
and must be performed correctly.

IV. Small Perturbation Equations
Assume that the steady wind components are zero and that there

is no initial sideslip.The vectorF in Eq. (52) is the vectorof external
forces and moments and, in this case, we will expand it to

F = Fe + Av x ¤
r (66)

where Av{} is a vector function giving the nonperfect � uid forces
and moments that are a function of the relative velocity x¤

r , where

x¤
r = (ur , vr , wr , p ¡ p f , q ¡ q f , r ¡ r f )

T (67)

that is, the relativevelocitiesincludingtheantisymmetricterms from
the gradient matrix U . The vector Fe represents any other external
forces and moments that are applied to the vehicle such as gravity.

We will now consider small perturbationsabout a steady nonro-
tating � ight condition. Let the vehicle state vector be given by

x = x0 + d x (68)

and the � uid motion state by

x f = x f 0 + d x f (69)

so that

xr = xr 0 + d xr (70)

and

d xr = d x + d x f (71)

The initial relative velocities are

xr0 = [Ur0 , Vr0, Wr0, 0, 0, 0]T (72)

and combining the � uids bulk and circulating motions we write

xr = x ¡ x f ¡ xc = x ¡ xg (73)

(Mr + Mi ) d Çx = (Mr + M̄i ) d Çxg + d Fe + Ae d xg + Ae d x ¡
U 0

0 0
(Mr + M̄i ) d xr

+

0 0 0 0 ¡ W0(m ¡ m̄) V0(m ¡ m̄)

0 0 0 W0(m ¡ m̄) 0 ¡ U0(m ¡ m̄)

0 0 0 ¡ V0(m ¡ m̄) U0(m ¡ m̄) 0

0 0 0 ¡ W0azm 0 U0azm

0 0 0 ¡ V0ax m ¡ U0ax m ¡ W0azm V0azm

0 0 0 ¡ W0ax m 0 ¡ U0ax m

d x

+

0 0 0 0 ¡ Wr0(m̄ ¡ Z Çw ) Vr0(m̄ ¡ Y Çv )

0 0 0 Wr 0(m̄ ¡ Z Çw ) 0 ¡ Ur0(m̄ ¡ X Çu )

0 0 0 ¡ Vr0(m̄ ¡ Y Çv ) Ur0(m̄ ¡ X Çu ) 0

0 ¡ Wr0(Y Çv ¡ Z Çw ) Vr0(Z Çw ¡ Y Çv ) ¡ Wr 0Y Çp Vr0(N Çv + Z Çq ) ¡ Ur0 M Çu ¡ Wr0(M Çw + Y Çr )

Wr0(X Çu ¡ Z Çw ) 0 Ur0(X Çu ¡ Z Çw ) ¡ Vr0 N Çv ¡ Ur0 Z Çq + Wr0 X Çq Vr0L Çv

¡ Vr 0(X Çu ¡ Y Çv ) ¡ Ur0(X Çu ¡ Y Çv ) 0 Ur0(M Çu + Y Çp) + Wr0 M Çw ¡ Vr0(L Çv + X Çq ) Ur0Y Çr

d xr (79)

so that

x0 = [Ur0 + Ug0, Vr0 + Vg0 , Wr0 + Wg0, 0, 0, 0]T

= [U0, V0, W0, 0, 0, 0]T (74)

The perturbed equation (52) is

(Mr + Mi ) d Çx = (Mr + M̄i ) d Çx f £ Fe0 + d Fe + Av x¤
r0 + d x¤

r

¡ ( d P + W0 + d W)(Mi ¡ M̄i )(x0 + d x)

¡
I 0

¡ B 0
d P + Wb

r0 + d Wb
r +

U 0

0 0

£ Mb
r + m̄

I 0
0 0

xb
r0 + d xb

r (75)

where for small perturbations the nonperfect � uid forces and mo-
ments are given by

Av x ¤
r0 + d x¤

r = Av x¤
r0 + Ae d x ¤

r (76)

and Ae is the small perturbation aerodynamic derivative matrix for
the steady-state � ight condition. Remember that this only contains
the nonperfect � uid terms at this stage.

Because we have perturbed about a steady state, we can write
Eq. (75) as

(Mr + Mi ) d Çx = (Mr + M̄i ) d Çx f £ d Fe + Ae d x ¤
r

¡ ( d P + d W)(Mi ¡ M̄i )(x0) ¡ W0(Mi ¡ M̄i ) d x

¡
I 0

¡ B 0
d P + d Wb

r Mb
r + m̄

I 0

0 0
xb

r0

+ Wb
r0 +

U 0

0 0
Mb

r + m̄
I 0

0 0
d xb

r (77)

The perfect � uid gradient effects can be seen to be due to the term

¡
U 0

0 0
Mb

r + m̄
I 0

0 0
d xb

r (78)

that is, a set of forces only, acting through the center of buoyancy.
Because these are just the perfect � uid effects, the symmetric part
of the gradient matrix is used; the antisymmetric part and its effects
are contained in Ae d x ¤

r .
When we make the usual symmetry assumptionsfor airships and

airplanesand substitute,theprecedingexpressionsprovidethe small
perturbation equations:
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These are the standard small perturbation equations for airships,26

but with unsteady � uid motion and velocitygradients included. Re-
member also that they include the perfect � uid effects mentioned in
Sec. III.C.

If the displaced mass is put to zero and all of the added masses
ignored,apart from Z Çw and M Çw , then the standardsmall perturbation
equations for the motion of airplanes in gusts are obtained (see
Refs. 8 and 9), including the effects of � uid motion and gradients.

V. Conclusions
A new formulation of the equations of motion of a rigid vehicle

in an unsteady heavy � uid has been derived that avoids the prob-
lems of earlier sets of equationsused for submersibles,airships, and
airplanes, particularly with regard to the moving � uid case. This is
achieved by clearly separating out the inertias, the added masses,
and the relative velocity effects and, by so doing, removing some
of the problems encounteredin the past. In addition,velocity gradi-
ents are taken into account in a way that links both irrotational and
rotational effects.

Classic perfect � uid results are recovered and the source of error
in an existingparafoilmodel is also revealed.The small perturbation
equationsrevert to those that are normallyused for both buoyantand
lifting vehicles, but with the addition of � uid motion and gradient
terms. As a result, the formulation provides a common set of equa-
tions of motion for describing the motion of underwater vehicles,
airships, parafoils, and airplanes in a moving � uid.
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